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Abstract: Herpesviruses assemble and fill their capsids in the infected cell nucleus, and must then move this 

enormous macromolecular assembly across the nuclear membrane and into the cytoplasm. Doing so is a complex, 

multi-step process that involves envelopment of the capsid at the inner nuclear membrane and de-envelopment by 

fusion with the outer nuclear membrane. This process is orchestrated by viral proteins, but requires the 

modification of cellular structures and mechanisms including the nuclear lamina. In this review I summarize 

recent research on the mechanism of nuclear envelopment and the viral and cellular systems involved in its 

execution. 
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Like most DNA genome viruses, herpesviruses 

express, replicate, and package their genomes in the 

nucleus. They are then presented with the interesting 

problem of moving an enormous macromolecular 

assembly (the nucleocapsid) across the inner and outer 

nuclear membranes to the cytoplasm. The virus solves 

this problem by using an envelopment/de-envelop- 

ment shuttle that involves extensive remodeling of the 

nuclear membrane. The mechanism that the virus uses 

to accomplish this is interesting from two points of 

view. First, the nuclear egress process is conserved 

among herpesviruses both in its appearance and in 

some of the viral proteins used to accomplish it. At the 

same time, aspects of the process are unlike anything 

that the uninfected cell does with the nuclear mem- 

brane. These considerations suggest that nuclear egress 

is an extremely attractive target for antiviral therapy.  

Second, nuclear egress requires the virus to interact 

with and modify the function of poorly understood 

cellular structures. This allows us to use the virus as a 

tool to explore the structure and function of the 

nuclear lamina and the nuclear envelope. 

 

MORPHOLOGICAL DESCRIPTION OF 

THE PROCESS 

It has been clear from the earliest morphological 

descriptions of herpesvirus-infected cells that virus 

capsids bud into the nuclear envelope to form 

enveloped particles in the space between the inner and 

outer nuclear membranes (13, 19, 50, 59, 65, 66, 71).  

Intermediates in the process included nucleocapsids 

docked at specialized areas of the inner nuclear 

membrane, partially-enveloped capsids in which both 
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inner and outer nuclear membranes are curved around 

the virus capsid, “stalked” intermediates in which the 

membrane wrapping around the capsid has been 

completed, but scission of the inner nuclear membrane 

has not occurred, and completely enveloped capsids in 

the perinuclear space. De-envelopment intermediates in 

which the perinuclear virion envelope has fused with 

the outer nuclear membrane have also been observed 

(27, 60, 70). EM analysis provides snapshots of the 

egress process and does not, by itself, indicate the 

directionality of the processes observed. The consensus 

of opinion now favors the model originally proposed 

by Stackpole (70) in which the major pathway of viral 

egress from the nucleus requires budding of capsids 

into the inner nuclear membrane, formation of enveloped 

virions in the perinuclear space, de-envelopment of 

the capsid by fusion of the envelope with the outer 

nuclear membrane. In addition to the morphological 

observations, this model is supported by two lines of 

evidence that suggest that the perinuclear enveloped 

virion is a transient intermediate in the egress process.  

First, viral proteins naturally targeted to the nuclear 

envelope or viral glycoproteins engineered to be 

retained in the ER/nuclear envelope are found in 

perinuclear virions, but not in mature virions, 

suggesting that the envelope of perinuclear virions 

must be lost and replaced at some point in the egress 

pathway (25, 56, 69, 75). Second, the accumulation of 

perinuclear enveloped virions associated with specific 

viral mutants, including mutants in proteins of the 

viral fusion apparatus, suggest that perinuclear virions 

require a membrane fusion step to advance in the 

egress pathway (4, 20, 60). Whether envelopment/de- 

envelopment is the only pathway for nuclear egress is 

controversial at present.  An alternative pathway in 

which capsids of herpes simplex virus (HSV) and 

bovine herpesvirus type 1 (BHV-1) exit the nucleus 

through dilated nuclear pores has been proposed (40, 

76), but does not account for much of the genetic and 

biochemical evidence that favors the envelopment/de- 

envelopment model (44), and is inconsistent with data 

showing that the nuclear pores of infected and 

uninfected cells show similar gating properties with 

respect to large molecules (30). 

Consideration of the consensus model for nuclear 

egress suggests that the virus has a set of significant 

problems to solve in order to successfully negotiate 

this pathway (Fig.1). Those problems and the research 

that provides some hints about how the virus solves 

those problems are summarized here. 

Recruitment of an envelopment apparatus to the 

inner nuclear membrane 

Herpes simplex virus pUL34 and pUL31 (the 

products of the UL34 and UL31 genes) and their 

homologs in other herpesviruses are required for 

efficient envelopment at the INM. They are also 

apparently the only virus-encoded proteins with a 

conserved function in nuclear egress. HSV-1 pUL34 

is a 275 amino acid type II transmembrane protein 

with the bulk of the protein comprising an N-terminal 

domain that extends into the cytoplasm or nucleo- 

plasm and a very short (2 a.a.) C-terminal luminal 

extension. All sequenced herpesvirus genomes have a 

UL34 gene homolog and all of these homologs in 

other herpesviruses preserve this general sequence 

arrangement. UL34 shows no apparent homology to 

cellular genes. pUL34 function has been most 

thoroughly studied in HSV and pseudorabies virus 

(PRV) where the behavior of specific deletion mutants 

has been characterized. HSV or PRV recombinant 
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Fig. 1. Schematic diagram of a model for nuclear egress. Following local clearing of the nuclear lamina (not shown) DNA-filled 

capsids are recognized by a membrane-bound envelopment complex (blue polygons). Lateral interactions between envelopment 

complexes mediate membrane curvature around the capsid. Scission of the inner nuclear membrane results in formation of an 

enveloped virion in the perinuclear space. Fusion of the virion envelope with the outer nuclear membrane, and disruption of 

envelopment complex interactions results in release of the capsid into the cytoplasm. 

 

mutant viruses that fail to express pUL34 are severely 

impaired for growth in cell culture and show no 

evidence of extracellular virus or extranuclear egress 

intermediates (37, 58). UL34-null infections none- 

theless show normal virus gene expression, DNA 

replication and assembly of DNA-containing capsids, 

suggesting that pUL34 functions specifically in virus 

nuclear egress. HSV pUL31 is a 306 a.a. soluble 

protein, homologs of which are also present in all 

sequenced herpesviruses. HSV-1 pUL34 and pUL31 

are targeted specifically to the INM by a mechanism 

that requires their interaction with each other (55, 56).  

pUL31 expressed in the absence of pUL34 localizes in 

the nucleoplasm (25, 55). pUL34 expressed in the 

absence of pUL31 accumulates in aggregates on the 

nuclear membrane and on cytoplasmic membranes (37, 

55). Expression of pUL31 and pUL34 together, even 

in the absence of other viral proteins, results in their 

specific accumulation on the nuclear envelope. The 

mutual dependence of pUL31 and pUL34 for proper 

INM targeting is a conserved feature of herpesvirus 

envelopment (25, 38, 47, 62). Their co-dependence for 

targeting is correlated with their physical interaction 

and the sequences in UL31 and UL34 that mediate 

their interaction and targeting to the INM have been 

mapped in both proteins (25, 41, 55, 63). Localization 

of HSV pUL34 to the nuclear membrane results in 

recruitment and co-localization of other viral and 

cellular proteins with specific functions in nuclear 

envelopment, including protein kinase C (PKC) alpha 

and delta, emerin and the viral protein kinase encoded 

by the US3 gene (39, 49, 60). Recruitment of PKC 

isoforms may be a conserved function of pUL34, since 

it was first observed for the mouse cytomegalovirus 

(MCMV) homolog (47). 

Movement of capsids from assembly sites to the 

inner nuclear membrane 

Herpesvirus capsids are large structures that are 

thought to be assembled at discrete sites near, but not 

at the nuclear membrane (74). While there is no 

quantitative data that addresses the issue of how far a 

capsid must move to reach a site of envelopment, there 

is reason to doubt that random diffusion will suffice. The 

nucleoplasm of an interphase cell displays different 
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viscosity properties depending upon the size of 

diffusing structures. Small particles like monomeric 

proteins diffuse freely through the nucleoplasm and 

their movement is constrained by a viscosity only 

slightly greater than that of water; the diffusion of 100 

nm microparticles (comparable in size to a herpesvirus 

capsid), however, is highly constrained (73). Forest et 

al. visualized the movement of fluorescently-labeled 

capsids in HSV-infected nuclei and found that most 

capsids do not move as though diffusing freely 

through the nucleoplasm, but rather show directed, 

energy-dependent motion (23). Involvement of actin 

was suggested by inhibition of active capsid move- 

ment by latrunculin B, which inhibits actin polymeri- 

zation by sequestering G-actin. Movement was not, 

however, inhibited by cytochalasin-D. Association of 

intranuclear herpesvirus capsids with filamentous 

actin has also been observed by block-face scanning 

electron microscopy (21). The significance of actin- 

mediated movement for virus assembly is not clear, 

since latrunculin B does not inhibit production of 

infectious virus, suggesting that it does not signifi- 

cantly affect nuclear egress (67). 

Local disruption of the nuclear lamina to allow 

capsid access to the INM 

The nuclear envelope anchors and is supported by a 

complex structure called the nuclear lamina. The 

lamina is composed of a meshwork of intermediate 

filament family proteins called lamins (1, 28, 77).  

Lamin proteins are of two types. A-type lamins are 

encoded by a single gene that is alternatively spliced 

to give rise to lamins A and C. There are two B-type 

lamins each encoded by its own gene. The lamin 

protein meshwork is linked to the INM and to 

intranuclear proteins by association with integral 

membrane lamin-associated proteins (LAPs), including 

emerin, lamin B receptor (LBR), LAP2-β and 

MAN-1 (reviewed in (31) and (77)). It has been 

recognized for several years that the nuclear envelop- 

ment process requires some reorganization of the 

nuclear lamina. The meshwork of the nuclear lamina 

is too small to allow passage of capsids through holes 

in the mesh (1), and physical measurements suggest 

that the lamin network is quite stiff and resistant to 

deformation (48). It is likely, therefore, that the lamina 

must be disrupted in order to allow the nucleocapsid 

to have access to the INM. An increasing body of 

literature has documented herpesvirus-dependent 

changes in nuclear architecture consistent with lamina 

disruption. 

Infection with wild-type virus results in several 

changes in nuclear architecture, including: (i) enlar- 

gement of the nucleus (5, 67); (ii) change in the shape 

of the nucleus from a smooth ovoid to something that 

more closely resembles a raisin in contour (5, 67, 68); 

(iii) changes in the localization of the lamin proteins 

from a smooth, even lining of the inner nuclear 

membrane to an uneven distribution showing gross 

thickening of the lamin layer at some sites and small 

perforations in the layer at other sites (5, 54, 68); (iv) 

masking and unmasking of monoclonal antibody 

epitopes on the lamin proteins that indicate a change 

in the conformation or associations of the lamin 

proteins (54). All of these changes require the 

presence of pUL34 in the infected cell, and at least the 

changes in lamin distribution and presentation of 

antibody epitopes also require the presence of pUL31 

(5, 54, 67, 68). 

The nuclear lamina disassembles at mitosis and 

reassembles afterwards. Disassembly is associated 
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with phosphorylation of lamins and of LAPs including 

emerin and LAP2β (11, 14, 17, 18, 22, 29, 51). 

Herpesviruses appear to adapt this strategy for lamina 

disruption. As first shown with its MCMV homolog, 

pUL34 recruits members of the PKC family to the 

nuclear envelope where they phosphorylate lamin 

proteins and at least one LAP, emerin. pUS3 is also 

recruited to the nuclear envelope, where it phosp- 

horylates lamin A/C proteins and emerin (39, 45, 46).  

While these activities might be expected to contribute 

to lamina disruption, pUS3 is not required for for- 

mation of perforations in the lamin layer. Surpri- 

singly, deletion of the US3 gene from the virus does 

not prevent disruption of the lamin layer, but results 

instead in the formation of large perforations in the 

lamina, resulting in a characteristic “Swiss cheese” 

appearance of the lamin layer (5, 39). This result 

suggests that pUS3 negatively regulates lamina 

disruption. It may be that the virus has an interest in 

limiting the disruption of nuclear architecture to the 

minimum required for efficient nuclear egress. 

Recognition of capsids by the envelopment appara- 

tus at the inner nuclear membrane 

One of the intriguing properties of the nuclear 

egress system is its selectivity in that nuclear envelop- 

ment apparently requires completion of the DNA 

packaging process. In wild-type virus infected cells, 

empty capsids are only rarely enveloped (57) and a 

variety of viral mutants that synthesize capsids but fail 

to complete the DNA packaging process do not 

efficiently envelop the capsids that are produced (2, 7, 

9, 43, 52, 61). DNA-containing herpesvirus capsids 

(called “C capsids”) differ from their empty 

precursors both in the protein composition and 

conformation of the virus capsid. DNA packaging 

results in loss of the scaffolding protein, angulari- 

zation of the capsid and subsequent recruitment of the 

pUL35 protein. These changes are also seen, however, 

in one class of empty capsids called “A capsids.”  

Nonetheless, C capsids are the preferred substrate for 

nuclear envelopment. Trus et al. have recently reported 

that A and C capsids can be structurally distinguished 

by the presence of a C-capsid-specific component 

(CCSC) positioned around the capsid pentamers and 

consisting of a complex of the pUL17 and pUL25 

proteins (72). In HSV infection, assigning a specific 

role for pUL17 or pUL25 in nuclear envelopment is 

problematic since both proteins play important roles in 

DNA packaging and absence of either protein results 

in failure to accumulate DNA-containing capsids (43, 

61). In PRV infection, however, absence of pUL25 

results in production of apparently normal DNA- 

containing capsids, but these capsids do not egress 

from the nucleus (35). Presence of the CCSC may 

“license” a capsid for nuclear envelopment directly or 

indirectly. pUL25 on the capsid recruits the large 

tegument protein VP1/2 to the capsid in the nucleus 

(10). Deletion of the gene encoding VP1/2 is 

associated with defects in nuclear egress in PRV, but 

not HSV (16, 42). 

Curvature of the inner and outer nuclear mem- 

branes around the capsid 

Tight curvature of membranes is energetically 

unfavorable, and it is likely that in HSV envelopment, 

as in other virus budding and vesicle formation processes, 

membrane curvature is coupled to energetically favo- 

rable protein-protein interactions.  Klupp et al, have 

shown that over-expression of alphaherpesvirus pUL31 

and pUL34 in the absence of other viral proteins can 

induce formation of small vesicles derived from the 
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INM (34). These data suggest the possibility that, at 

normal levels of expression, upon recognition of a 

capsid, these two proteins may interact in a way that 

induces tight curvature of the INM around the capsid. 

Scission of the inner nuclear membrane 

Virus budding in the cytoplasm, whether at the 

plasma membrane or into membranes of the secretory 

apparatus is topologically equivalent to membrane 

budding into multivesicular bodies (MVBs) (reviewed 

in (8)). Not surprisingly, some, but not all viruses that 

bud into cytoplasmic membranes, including herpes- 

viruses that are undergoing secondary envelopment, 

recruit proteins of the cellular MVB system for 

membrane scission at the end of the budding process 

(6, 8, 12). These cellular proteins have been reported 

to act at cytoplasmic membranes, but not, so far, at the 

nuclear membrane.  Inhibition of the MVB sorting 

system by use of dominant negative vps4 protein 

inhibits secondary, but not primary HSV envelopment, 

suggesting that nuclear envelopment makes use of 

some other system (6, 12). There is no topologically 

analogous process that occurs at the uninfected cell 

nuclear membrane and no known cellular machinery 

for accomplishing this.  Whether the virus encodes 

its own scission machinery or recruits an as yet 

uncharacterized cellular system is a major unanswered 

question. 

Fusion of the virion envelope with the outer 

nuclear membrane 

De-envelopment at the outer nuclear membrane is 

similar to virus entry at the beginning of infection in 

that both processes use fusion between the virus 

envelope and a cellular membrane to deliver a DNA- 

containing capsid to the cytoplasm. While it would 

seem economical for the virus to use a common fusion 

machinery for both initial entry and for de-envelop- 

ment, things are not so simple. Four virus envelope 

glycoproteins are required for virus entry at the 

beginning of infection, gB, gD, gH and gL. gD and gB 

have receptor-binding activities and gB and the gH/gL 

heterodimer have been implicated in the membrane 

fusion event. Deletion of any one of these genes 

results in failure of the virus to enter cells, but has no 

significant effect on nuclear egress. In HSV infection, 

simultaneous deletion of the genes for gB and gH 

results in accumulation of enveloped virus particles in 

the space between the inner and outer nuclear mem- 

branes and decreased, but did not eliminate, produc- 

tion of mature extracellular virions (20). This result 

suggests that there may be at least three mechanisms 

for de-envelopment fusion – one gB-dependent, one 

gH/gL-dependent, and one dependent upon neither 

that may use host cell fusion machinery. The degree to 

which these mechanisms contributes to nuclear egress 

may be virus-dependent as well since, in PRV, deletion 

of both gB and gH does not result in accumulation of 

perinuclear virions (33). In several different alphaher- 

pesviruses including HSV and PRV, deletion of the 

US3 gene or elimination of its catalytic activity also 

results in the accumulation of enveloped virus 

particles in the space between the inner and outer 

nuclear membranes, suggesting that the relevant pUS3 

substrate plays an important role regardless of the 

contribution of gB or gH/gL (36, 56, 60, 64). 

Capsid release into the cytoplasm 

Whatever energetically favorable interactions mediate 

membrane curvature around the capsid at the inner 

nuclear membrane must be reversed in order to release 
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the capsid into the cytoplasm. The mechanism of this 

reversal is unknown, but may involve factors provided 

by cytoplasmic extracts in an in vitro envelopment 

system (53). 

 

UNANSWERED QUESTIONS 

Evidence accumulated so far is consistent with a 

model in which events at the nuclear membrane are 

largely coordinated by an envelopment complex consi- 

sting of pUL34, pUL31 and pUS3 and their interac- 

tions with DNA-containing capsids. There are, however, 

many unanswered questions and genuine puzzles 

presented by the literature. One of these concersn the 

role of other viral genes whose mutation results in a 

nuclear egress phenotype. Deletion or mutation of the 

UL11, UL20, UL37 and ICP34.5 genes appears to 

affect the efficiency of nuclear egress in ways that are 

not obviously tied to their locations in the cell or their 

other characterized functions (3, 4, 15, 32). In the 

cases of UL11 and UL20, nuclear egress phenotypes 

have been observed only with specific deletion viruses 

that express truncated or fused forms of the proteins 

whose function may not reflect any activity of the 

intact protein (24, 26). For UL37 and ICP34.5, it is 

possible that that they have multiple functions, one of 

which is modulation of nuclear egress. The nature of 

those functions has yet to be determined. Interestingly, 

deletion of UL34 from either PRV or HSV does not 

completely inhibit the production of viral infectivity, 

suggesting that there is a minor UL34-independent 

pathway for nuclear egress (3, 4, 15, 32, 37, 58). The 

mechanism of this pathway is unknown, but the exis- 

tence of such a pathway may be consistent with me- 

chanisms for egress that do not involve envelopment. 
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